A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer.

نویسندگان

  • Qiang Gao
  • Yanyan Guo
  • Jing Liu
  • Xiaqing Yuan
  • Honglan Qi
  • Chengxiao Zhang
چکیده

A glucose biosensor based on a nanocomposite made by layer-by-layer electrodeposition of the redox polymer into a multilayer containing glucose oxidase (GOx) and single-walled carbon nanotubes (SWCNT) on a screen-printed carbon electrode (SPCE) surface was developed. The objectives of the electrodeposition of redox polymer are to stabilize further the multilayer using a coordinative cross-linked redox polymer and to wire the GOx. The electrochemistry of the layer-by-layer assembly of the GOx/SWCNT/redox polymer nanocomposite was followed by cyclic voltammetry. The resultant biosensor provided stable and reproducible electrocatalytic responses to glucose, and the electrocatalytic current for glucose oxidation was enhanced with an increase in the number of layers. The biosensor displayed a linear range from 0.5 to 6.0mM, a sensitivity of 16.4μA/(mMcm(2)), and a response time of about 5s. It shows no response to 0.05mM of ascorbic acid, 0.32mM of uric acid and 0.20mM of acetaminophen using a Nafion membrane covering the nanocomposite-modified electrode surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer.

This work demonstrates a new approach for building bioinorganic interfaces by integrating biologically derived silica with single-walled carbon nanotubes to create a conductive matrix for immobilization of enzymes. Such a strategy not only allows simple integration into biodevices but presents an opportunity to intimately interface an enzyme and manifest direct electron transfer features. Biolo...

متن کامل

An Amperometric Biosensor for Glucose Determination Prepared from Glucose Oxidase Immobilized in Polyaniline-Polyvinylsulfonate Film

In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate (Pani-Pvs) films has been accomplished via the entrapment technique. Electropolymerization of aniline on the Pt surface of the Pt electrode was carried out at constant potential (0.75 V, vs. Ag/AgCl) using an electrochemical cell containin...

متن کامل

Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.

Based on their size and unique electrical properties, carbon nanotubes offer the exciting possibility of developing ultrasensitive, electrochemical biosensors. In this study, we describe the construction of amperometric biosensors based on the incorporation of single-walled carbon nanotubes modified with enzyme into redox polymer hydrogels. The composite films were constructed by first incubati...

متن کامل

Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode.

Poly(amidoamine) dendrimers having various degrees of modification with the redox-active ferrocenyls were prepared by controlling the molar ratio of ferrocenecarboxaldehyde to amine groups of dendrimers. By alternate layer-by-layer depositions of partial ferrocenyl-tethered dendrimers (Fc-D) with periodate-oxidized glucose oxidase (GOx) on a Au surface, an electrochemically and enzymatically ac...

متن کامل

Design and Fabrication of Biosensor Based on Immobilized AchE on Modified Electrode by Graphene-multiwall Carbon Nanotubs/Beta Cyclodexterin-chitosan

Organophosphorus (OP) forms an important class of toxic compounds. They inhibit acetyl cholinesterase (AChE, EC 3.1.1.7) that results in respiratory and myocardial malfunctions. Pesticides could be accumulated in vegetables and fruits, so detection of them is very important. The goals of this study are decreasing detection time and detection limit of methyl parathion bioprobe. In this research ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectrochemistry

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 2011